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Abstract

The approximation of problems with linear convection and degenerate nonlinear diffusion, which arise in
the framework of the transport of energy in porous media with thermodynamic transitions, is done using a
θ-scheme based on the centred gradient discretisation method. The convergence of the numerical scheme is
proved, although the test functions which can be chosen are restricted by the weak regularity hypotheses on
the convection field, owing to the application of a discrete Gronwall lemma and a general result for the time
translate in the gradient discretisation setting. Some numerical examples, using both the Control Volume
Finite Element method and the Vertex Approximate Gradient scheme, show the role of θ for stabilising the
scheme.
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1 Introduction

The development of geothermal energy leads to increasing needs for simulating the displacement of the water
in a porous medium, accounting for the liquid-vapour change of phase [5]. This is achieved by writing the
system of the conservation equation of the mass of water and that of the conservation of energy, together with
a system of equations and inequalities expressing the thermodynamic equilibrium between the two phases when
they are simultaneously present [10]. Let us consider a simplification of this system, which may be considered
as a reasonable approximation in some physical cases:

∂t(ρl(1− S) + ρvS)− div

(
K

µ
(ρl(1− S) + ρvS)∇P

)
= w, (1)

∂t(el(1− S) + evS)− div

(
K

µ
(el(1− S) + evS)∇P + Λ∇T

)
= f, (2)

(T < Te and S = 0) or (T = Te and 0 ≤ S ≤ 1) or (T > Te and S = 1). (3)

In the preceding system, the indices l, v respectively stand for the liquid and vapour phases, S is the saturation
of the vapour phase (hence 1−S is that of the liquid phase), P the pressure assumed to be common for the two
fluids (we neglect the capillary pressure), and for α = l, v, ρα and eα are respectively the density and the internal
energy per mass unit of the phase α, assumed to be given functions of T . In System (2)-(3), the mobilities of
the phases l and v are assumed to be equal to (1 − S)/µ and S/µ, assuming the same viscosity µ for the two
phases, and K is the absolute permeability field. The thermal conductivity is denoted by Λ. The right hand
sides w and f are respectively the source terms of water and energy. The thermodynamic equilibrium between
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†Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), UPEM, UPEC, CNRS, F-77454,

Marne-la-Vallée, France (Robert.Eymard@u-pem.fr), (xavier.lhebrard@u-pem.fr)
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the two fluid phases l and v is assumed to hold when the temperature is equal to the equilibrium temperature
Te, assumed to be a constant; otherwise, one of the two fluid phases is missing.
Now denoting by ū = el(1− S) + evS, we notice that, from (3), it is possible to express T − Te as a function ν
of ū. For example, if el = Cl(T − Te) and ev = L+Cv(T − Te), where L is the latent heat and Cα the thermal
capacity of phase α, then there holds,

ν(ū) =


ū

Cl
ū < 0,

0 0 ≤ ū ≤ L,
ū− L
Cv

ū > L.

Therefore, denoting by ~v = −Kµ∇P and only focusing on the energy conservation (we assume that the wa-

ter conservation equation (1) is in some way decoupled from this problem), we consider the following linear
convection – degenerate diffusion problem, issued from (2)-(3):

∂tū(x, t) + div( ū(x, t)~v(x, t)− Λ(x)∇ν(ū(x, t)) ) = f(x, t), for a.e. (x, t) ∈ Ω× (0, T ), (4a)

with the initial condition:
ū(x, 0) = uini(x), for a.e. x ∈ Ω, (4b)

together with the homogeneous Dirichlet boundary condition:

ν(ū(x, t)) = 0 on ∂Ω× (0, T ). (4c)

In (4), we consider the following hypotheses.

• Ω is an open bounded connected polyhedral subset of Rd, d ∈ N? and T > 0 is now the final time, (5a)

• uini ∈ L2(Ω), (5b)

• ~v ∈ L∞(Ω× (0, T )), (5c)

• Λ is a measurable function from Ω to the set of d× d symmetric matrices and

there exist λ, λ > 0 such that, for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ], (5d)

• f ∈ L2(Ω× (0, T )), (5e)

• ν ∈ C0(R) is non–decreasing, Lipschitz continuous with constant Lν and s.t. ν(0) = 0, and (5f)

|ν(s)| ≥ Lν |s| − Cν for all s ∈ R for some given values Lν , Cν ∈ (0,+∞). (5g)

We remark that (5f) and (5g) imply 0 < Lν ≤ Lν . Note that, inspired by the properties which can be expected
from (1), Hypothesis (5c) only prescribes poor regularity properties for the velocity, that we only assume to be
bounded, without regularity hypotheses on its derivatives. This weak regularity at least implies that Problem
(4) must be considered in a weak sense (see (6) below). Hypotheses (5f)-(5g) on ν are classically satisfied
in the framework described in the beginning of this section. The assumptions on Λ are taking into account
heterogeneous and anisotropic porous media.
A function ū is said to be a weak solution of Problem (4) if the following holds:

ū ∈ L2(Ω× (0, T )), ν(ū) ∈ L2(0, T ;H1
0 (Ω)), ∀ϕ ∈ C∞c (Ω× [0, T )),

−
∫ T

0

∫
Ω

ū(x, t)∂tϕ(x, t)dxdt−
∫

Ω

uini(x)ϕ(x, 0)dx

+

∫ T

0

∫
Ω

(Λ(x)∇ν(ū)(x, t)− ū(x, t)~v(x, t)) · ∇ϕ(x, t)dxdt =

∫ T

0

∫
Ω

f(x, t)ϕ(x, t)dxdt,

(6)

where we denote by C∞c (Ω× [0, T )) the set of the restrictions of functions of C∞c (Ω× (−∞, T )) to Ω× [0, T ).
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Let us first comment the question of the existence and uniqueness of a solution to (6), which enters into the class
of the degenerate parabolic equations of the Stefan type, with a linear convection term, but with an irregular
velocity, since we only assume ~v ∈ L∞(Ω× (0, T )). For a regular velocity, and using a weak formulation based
on Krushkov entropies which implies (6), the existence and uniqueness of a solution is proved in [8], and, for
the triply degenerate problem in [4].
Here, although the convection term is linear, there can exist infinitely many solutions to (6), due to the fact that
the test functions are assumed to vanish at the boundary. Indeed, the case where ν is constant on an interval is
included in our study, and therefore (6) includes the case of linear scalar hyperbolic equations whose solutions
are valued in such an interval: assume that Ω = (0, 1), ~v = 1, ν(s) = 0 for all s ∈ [0, 1], uini = 0, f = 0. Then,
for any α ∈ [0, 1], the function ū(x, t) = α for x < t and ū(x, t) = 0 for x > t is solution to (6) since it verifies
∂tū + ∂xū = 0 in the distribution sense. On the contrary, if the velocity is regular and if ν−1({0}) = {0} or
~v ·n = 0 on ∂Ω× (0, T ) (homogeneous Neumann boundary conditions are often chosen in the framework of fluid
flows in porous media), one can expect that the solution to (6) is unique. But, only assuming (5c), the lack of
regularity of ~v prevents from applying the existence and uniqueness results of the literature. In [11], existence
is proved with very low regularity for ~v, but uniqueness only holds if ~v ∈ W 1,1 and div~v ∈ L∞, and in [2], the
preceding results are extended to the case where ~v ∈ BV , and div~v ∈ L∞.
Hence in this paper, we only provide an existence result (obtained here through the convergence of a numerical
scheme). Recall that, in the case where ν is affine, (6) enters into the framework of linear and quasilinear second
order differential equations, for which there are numerous numerical approximations (see for example [23, 9]
for approximations using mixed finite element methods in the quasilinear case). But the case where ν is no
longer affine leads to additional difficulties, some of which have been solved only after the seminal paper by
Alt and Luckhaus [1] (as recalled below). Without a convection term, the approximation of this problem by
conforming methods is studied in [3, 13, 14, 24]. In the case of a convection term with a regular velocity, see
[26] for an approach based on monotone graphs, and refer to [7] for a numerical approach leading to an entropy
diminishing scheme.
Let us now describe the specific difficulties for the convergence analysis of the numerical approximation, that
are issued from the linear convection term with irregular velocity and a non-affine function ν. We follow in this
paper the same mathematical steps for this proof as the ones which would be considered in the study of the
convergence of uε, solution in a weak sense to the problem

∂tuε + div
(
uε~v(x, t)− Λ∇ν(uε)

)
= fε, in Ω× (0, T ),

together with the same initial and boundary conditions as those included in Problem (4), assuming that fε
converges to f in L2(Ω× (0, T )) as ε→ 0. In the case where the velocity ~v is sufficiently regular (for example,
~v ∈ H1(Ω)d, or even more regular as in [8]), one can multiply the equation by uε, in order to get an estimate
on u2

ε. Assuming that uε = 0 holds on the part ∂Ω− of ∂Ω where ~v ·n < 0 holds, we can apply the calculation
chain ∫

Ω

uεdiv(uε~v)dx =

∫
Ω

u2
ε

2
div~vdx +

∫
∂Ω−

u2
ε

2
~v · nds(x) +

∫
∂Ω\∂Ω−

u2
ε

2
~v · nds(x) ≥

∫
Ω

u2
ε

2
div~vdx,

and an estimate on
∫

Ω
u2
εdx can be obtained.

In the present situation, due to the less regular hypothesis (5c), the above calculation chain no longer holds,
and this choice for the test function does not lead to any estimate. Moreover, the only test function that we
can take at the discrete level, even in the case of more regular ~v, is ν(uε), using the equation which provides
a control on ∇ν(uε) in L2(Ω × (0, T ))d. Indeed, our aim is to approximate Problem (6) in some framework
which includes, in addition to conforming finite elements, non-conforming methods such as mixed finite element
methods, or discontinuous Galerkin methods, and other more recent methods [12]. In such a general framework,
the continuous gradient operator is replaced by a discrete one, denoted by ∇D. Then Stampacchia’s result [25],
which allows to write in the continuous case Λ∇ν(uε) · ∇η(uε) = Λ∇ϕ(uε) · ∇ϕ(uε) with (ϕ′)2 = ν′η′, does not
hold in the discrete framework (note that Stampacchia’s result has a discrete counterpart if the scheme is based
on the two-point flux approximation, but in this case, the meshes are restricted, and Λ should be isotropic, see
the discussion in [17]).
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Let us sketch the steps of the convergence proof, only using the test function ν(uε). We introduce the function
ξ(s) =

∫ s
0
ν(x)dx (as in (15)), and we obtain, after integration on Ω× (0, T ), and an integration by parts,∫

Ω

ξ(uε(x, T ))dx−
∫

Ω

ξ(uini)dx +

∫ T

0

∫
Ω

(
Λ∇ν(uε)− uε~v(x, t)

)
· ∇ν(uε)dxdt =

∫ T

0

∫
Ω

fεν(uε)dxdt. (7)

Owing to Hypothesis (5g), we can show that
∫

Ω
ξ(uε(x, T ))dx ≥ C(‖uε(·, T )‖2L2(Ω) − 1) for some constant C.

We then write, using the Young inequality,∣∣∣∣∣
∫ T

0

∫
Ω

uε~v(x, t) · ∇ν(uε)dxdt

∣∣∣∣∣ ≤ α
∫ T

0

‖uε(·, t)‖2L2(Ω)dt+ β‖∇ν(uε)‖2L2(Ω×(0,T )),

with β small enough for controlling the second term by
∫ T

0

∫
Ω

Λ∇ν(uε) · ∇ν(uε)dxdt. We can then use the
Cauchy-Schwarz and the Poincaré inequalities for handling the right hand side of (7). This leads to an equation
under the form

‖uε(·, T )‖2L2(Ω) ≤ A
∫ T

0

‖uε(·, t)‖2L2(Ω)dt+B,

allowing for the application of Gronwall’s lemma. Gathering these results, we obtain the following estimates:

(E1) an estimate on ν(uε) in L2(0, T ;H1
0 (Ω)),

(E2) an estimate on uε in L∞(0, T ;L2(Ω)),

(E3) an estimate on ∂tuε in L2(0, T ;H−1(Ω)).

Once these estimates are proved, it only remains to prove that, under the extraction of a subsequence from a
sequence of approximate solutions, uε converges to a weak solution of the problem. One remarkable idea in [1]
is the use of the following result:

‖ν(uε(·, ·+ τ))− ν(uε)‖2L2(Ω×(0,T−τ)) ≤ τ 2Lν‖∂tuε‖L2(0,T ;H−1(Ω))‖ν(uε)‖L2(0,T ;H1
0 (Ω))

(we give a discrete equivalent of this result in Lemma A.1). This result, in addition to (E1) and (E3), allows
to apply Kolmogorov’s theorem, and therefore to extract a sequence (ν(uεm))m∈N which converges to some
function χ in L2(Ω× (0, T )). Estimate (E2) allows to extract a subsequence from the preceding one such that
there exists ū ∈ L∞(0, T ;L2(Ω)) with (uεm)m∈N weakly converges to ū. Then, owing to the monotonicity of ν,
Minty’s trick provides that χ = ν(ū).

In the convergence part of this paper, we therefore derive discrete equivalents of (E1)-(E2)-(E3), from similar
computations only resulting from the multiplication of the discrete scheme by ν(uε).

We emphasise that the scheme which is considered below includes a parameter θ, such that, if θ = 0, the
convection term is explicit, if θ = 1/2, the convection term is centred in time, and if θ = 1, the convection term
is implicit. We consider in this paper the case θ ∈ R since we show in the numerical examples that values θ > 1
lead to a kind of stabilisation in the case where oscillations occur for θ ∈ [0, 1]. In all cases, the degenerate
diffusion term is taken implicit. We recall that, for a centred finite volume scheme for the convection, the θ-
scheme is L2- stable only if θ ≥ 1/2. We prove below that this limitation does not apply in the framework of
this paper: for any θ ∈ R, the degenerate diffusion is sufficient for leading to weakly convergent schemes and in
some particular cases to a strong convergence property.

This paper is organised as follows. We first apply the gradient discretisation tools to the continuous Problem
in Section 2, and derive some estimates, which are used in Section 3 for the convergence analysis. Finally in
Section 4, numerical examples show the behaviour of the Control Volume Finite Element scheme (CVFE) and
the Vertex Approximate Gradient (VAG) scheme [18] which present some interesting characteristics for coupled
flows in porous media.
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2 Approximation by space-time gradient discretisations

In the same manner as in [16], the discretisation of Problem (6) is obtained by simply replacing the contin-
uous operators by their discrete equivalent, following the Gradient Discretisation Method [12]. Let DT :=
(XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time discretisation in the sense of [12, Definition 4.1], such that
D := (XD,0,ΠD,∇D) is a space gradient discretisation for Dirichlet boundary conditions in the sense of [12,

Definition 2.1] (we then denote by δt(n+ 1
2 ) := t(n+1) − t(n) and δtD = maxn=0,...,N−1 δt

(n+ 1
2 )). Then, [12, Defini-

tion 2.1] specifies that ‖ · ‖D := ‖∇D · ‖L2(Ω)d is a norm on XD,0, and the following quantities: CD ∈ [0,+∞),
SD : H1

0 (Ω)→ [0,+∞) and WD: Hdiv(Ω)→ [0,+∞), are defined by

CD = max
v∈XD,0\{0}

‖ΠDv‖L2(Ω)

‖v‖D
, (8)

∀ϕ ∈ H1
0 (Ω) , SD(ϕ) = min

v∈XD,0

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

)
, (9)

∀ϕ ∈ Hdiv(Ω), WD(ϕ) = max
u∈XD,0\{0}

1

‖u‖D

∣∣∣∣∫
Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)divϕ(x)) dx

∣∣∣∣ . (10)

These quantities are then used in the following definitions.

Definition 2.1 (coercivity, GD-consistency, limit-conformity and compactness). Under Hypotheses (5), let
((DT )m)m∈N be a sequence of space-time gradient discretisations. The sequence ((DT )m)m∈N is said to be:

• coercive if there exists CP > 0 such that CDm
≤ CP for all m ∈ N (see (8)).

• GD-consistent if, for all ϕ ∈ H1
0 (Ω), limm∈N SDm(ϕ) = 0 (see (9)), and in addition: for all u ∈ L2(Ω),

limm→∞ ‖u−ΠDmIDmu‖L2(Ω) = 0 and limm→∞ δtDm = 0.

• limit-conforming if, for all ϕ ∈ Hdiv(Ω), limm∈NWDm
(ϕ) = 0 (see (10)).

• compact if, for any (vm)m∈N such that vm ∈ XDm,0 for all m ∈ N and (∇Dm
vm)m∈N is bounded in L2(Ω)d,

the set {ΠDm
vm : m ∈ N} is relatively compact in L2(Ω).

We assume that ΠD is a piecewise constant function reconstruction in the sense of the following definition:

Definition 2.2 (Piecewise constant reconstruction and nonlinear functions of the elements of XD,0). We say
that the reconstruction ΠD is piecewise constant if there exists a finite set I and a family of disjoint subsets
(Ωi)i∈I of Ω (some of the Ωi can be empty) such that XD,0 = RI and

∀v = (vi)i∈I ∈ XD,0 , ΠDv =
∑
i∈I

vi1Ωi
, (11)

where 1Ωi
is the characteristic function of Ωi. In other words, (ΠDv)|Ωi

= vi for all i ∈ I.
For any g ∈ C0(R) and v = (vi)i∈I ∈ XD,0, denoting g(v) ∈ XD,0 the element g(v) := (g(vi))i∈I ∈ XD,0, we
then have

For a.e. x ∈ Ω, g(ΠDv(x)) = ΠDg(v)(x). (12)

We introduce the following notations for the definition of discrete space-time dependent functions:

for a.e. x ∈ Ω,∀θ ∈ R, ∀v := (v(n))n=0,...,N ∈ XN+1
D,0 :

Π
(θ)
D v(x, 0) = ΠDv

(0)(x),
∀t ∈ (t(n), t(n+1)], ∀n = 0, . . . , N − 1 :

δ
(n+ 1

2 )

D v(x) = ΠD
v(n+1) − v(n)

δt(n+ 1
2 )

(x), δDv(x, t) = δ
(n+ 1

2 )

D v(x),

v(n+θ) = θ v(n+1) + (1− θ) v(n), Π
(θ)
D v(x, t) = ΠDv

(n+θ)(x), ∇(θ)
D v(x, t) = ∇Dv(n+θ)(x).

(13)
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Note that letting θ = 1 in (13) provides implicit expressions.
The approximate solution u := (u(n))n=0,...,N is computed through the following θ−scheme, for a given θ ∈ R.

u(0) = IDuini ∈ XD,0 and for all n = 0, . . . , N − 1 :
u(n+1) ∈ XD,0,∫

Ω

(
δ

(n+ 1
2 )

D u(x)ΠDv(x)−ΠDu
(n+θ)(x)~v(x, t) · ∇Dv(x)

+Λ(x)∇Dν(u(n+1))(x) · ∇Dv(x)
)

dx

=
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDv(x)dxdt, ∀v ∈ XD,0, ∀n = 0, . . . , N − 1.

(14)

Let us observe that the time discretisation of the degenerate diffusion term is implicit, whereas a θ-scheme is
used for the convection term. We finally introduce the function

ξ(s) =

∫ s

0

ν(x)dx, ∀s ∈ R. (15)

We then have

ξ(s) =

∫ s

0

ν(x)dx =

∫ s

0

(ν(x)− ν(0))dx ≤ Lν
∫ s

0

xdx = Lν
s2

2
, ∀s ∈ R, (16)

and, from Hypotheses (5f) and (5g), and using Young’s inequality,

ξ(s) ≥
∫ |s|

0

(Lνx− Cν)dx =
1

2
Lν |s|2 − Cν |s| ≥

1

4
Lνs

2 − C2
ν

Lν
, ∀s ∈ R. (17)

Lemma 2.3 (Discrete versions of (E1) and (E2) and existence of a discrete solution). Under Hypotheses (5),
let DT = (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time gradient discretisation such that ΠD is a piecewise
constant function reconstruction (see Definition 2.2). Let γ ∈ (0, 1) be given and let θ ∈ R be such that

4‖~v‖2L∞(Ω×(0,T ))θ
2δtD ≤ γLνλ. (18)

Let Cini > 0 be such that
Cini > ‖uini −ΠDu

(0)‖L2(Ω), (19)

and let CP > 0 be such that
CP > CD. (20)

Then there exists at least one solution to Scheme (14), and there exists C1 > 0, only depending on Lν , Lν , Cν ,
CP , Cini, f , ~v, λ, θ and γ such that, for any solution u to this scheme,

‖Π(1)
D ν(u)‖L∞(0,T ;L2(Ω)) ≤ C1, ‖Π(1)

D u‖L∞(0,T ;L2(Ω)) ≤ C1, and ‖Π(θ)
D u‖L∞(0,T ;L2(Ω)) ≤ C1, (21)

and
‖∇(1)
D ν(u)‖L2(Ω×(0,T )) ≤ C1. (22)

Remark 2.4 (On condition (18)). For any consistent sequence ((DT )m)m∈N of space-time gradient discretisa-
tions, condition (18) is necessarily satisfied for m large enough for any θ ∈ R, since the consistency property
implies that δtDm tends to 0 as m→∞. For a given space-time gradient discretisation, it is always possible to
choose θ ∈ R such that condition (18) holds (see Section 4 for an example of numerical maximum value for |θ|
such that this condition holds).

Proof. Before showing the existence of at least one discrete solution to Scheme (14), let us first prove (21) and

(22). From properties (16) and (17), and using
∫ b
a
ν(s)ds = ξ(b) − ξ(a) = ν(b)(b − a) −

∫ b
a
ν′(s)(s − a)ds, we
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get, since (5f) implies ν′(s) ≥ 0 and using the piecewise constant reconstruction hypothesis which implies that
(12) holds, that

(ΠDu
(n+1)(x)−ΠDu

(n)(x)) ΠDν(u(n+1))(x) ≥ ΠDξ(u
(n+1))(x)−ΠDξ(u

(n))(x) for a.e. x ∈ Ω.

We then let v = δt(n+ 1
2 )ν(u(n+1)) in (14), and we sum the obtained equation on n = 0, . . . ,m − 1 for a given

m = 1, . . . , N . Accounting for the above inequality yields that there holds

∫
Ω

(ξ(ΠDu
(m)(x))− ξ(ΠDu(0)(x)))dx + λ

∫ t(m)

0

∫
Ω

|∇(1)
D ν(u)(x, t)|2dxdt

≤
∫ t(m)

0

∫
Ω

(
Π

(θ)
D u(x, t)~v(x, t) · ∇(1)

D ν(u)(x, t) + f(x, t)Π
(1)
D ν(u)(x, t)

)
dxdt, ∀m = 0, . . . , N, (23)

since for m = 0 the above inequality reduces to 0 ≤ 0. Thanks to Young’s inequality and applying the
definition of the coercivity constant (8), we get that, for any n = 0, . . . ,m − 1, for every η1 > 0 and a.e.
(x, t) ∈ Ω× (t(n), t(n+1)),

f(x, t) ΠDν(u(n+1))(x) ≤ 1

2η1
|f(x, t)|2 +

η1

2
|ΠDν(u(n+1))(x)|2

≤ 1

2η1
|f(x, t)|2 +

C2
Dη1

2
|∇Dν(u(n+1))(x)|2. (24)

Summing two Young’s inequalities applied to both terms θ ΠDu
(n+1)(x)~v(x, t) · ∇Dν(u(n+1))(x) and

(1− θ) ΠDu
(n)(x)~v(x, t) · ∇Dν(u(n+1))(x), we get that for every η2 > 0 and a.e. (x, t) ∈ Ω× (t(n), t(n+1)),

|ΠDu(n+θ)(x)~v(x, t) · ∇Dν(u(n+1))(x)|

≤ ‖~v‖L∞(Ω×(0,T ))

(
1

2η2

(
θ2 (ΠDu

(n+1)(x))2 + (1− θ)2 (ΠDu
(n)(x))2

)
+ η2|∇Dν(u(n+1))(x)|2

)
. (25)

Thus from (23), using (24) with η1 = λ/(2C2
D) and (25) with η2 = λ/(2‖~v‖L∞(Ω×(0,T ))), we get that, for all

m = 0, . . . , N (with the convention that an empty sum is equal to 0),

‖ΠDξ(u(m))‖L1(Ω) +
1

4
λ‖∇(1)

D ν(u)‖2L2(Ω×(0,t(m)))

≤
‖~v‖2L∞(Ω×(0,T ))

λ

m−1∑
n=0

δt(n+ 1
2 )
(
θ2 ‖ΠDu(n+1)‖2L2(Ω) + (1− θ)2 ‖ΠDu(n)‖2L2(Ω)

)
+
C2
D
λ
‖f‖2L2(Ω×(0,t(m))) + ‖ΠDξ(u(0))‖L1(Ω). (26)

This in turn yields, thanks to (16) and (17) and using 1
4λ‖∇

(1)
D ν(u)‖2

L2(Ω×(0,t(m)))
≥ 0,

(
Lν
4
−
‖~v‖2L∞(Ω×(0,T ))

λ
δt(m−

1
2 )θ2

)
‖ΠDu(m)‖2L2(Ω)

≤
‖~v‖2L∞(Ω×(0,T ))

λ

m−1∑
n=1

(
θ2 δt(n−

1
2 ) + (1− θ)2δt(n+ 1

2 )
)
‖ΠDu(n)‖2L2(Ω)

+
C2
D
λ
‖f‖2L2(Ω×(0,T )) +

(
‖~v‖2L∞(Ω×(0,T ))

λ
(1− θ)2δt(

1
2 ) +

Lν
2

)
‖ΠDu(0)‖2L2(Ω) +

C2
ν

Lν
, ∀m = 1, . . . , N. (27)
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Let us notice that (18) has been designed in order that the coefficient of ‖ΠDu(m)‖2L2(Ω) at the left hand side

remains strictly positive. Indeed, (18) is equivalent to

Lν
4
− θ2

‖~v‖2L∞(Ω×(0,T ))

λ
δtD >

Lν(1− γ)

4
.

Since, owing to (19), we have
‖ΠDu(0)‖L2(Ω) ≤ ‖uini‖L2(Ω) + Cini, (28)

we obtain, denoting am = ‖ΠDu(m)‖2L2(Ω) for all m = 1, . . . , N , that

∀m ∈ {1, . . . , N}, am ≤
m−1∑
n=1

bnan +B, (29)

with the convention that an empty sum is equal to zero, and denoting by

B =
4

Lν(1− γ)

(
C2
D
λ
‖f‖2L2(Ω×(0,T )) +

(
Lν
2

+ (1− θ)2T
‖~v‖2L∞(Ω×(0,T ))

λ

)
(‖uini‖L2(Ω) + Cini)

2 +
C2
ν

Lν

)
,

and

bn = A(θ2δt(n−
1
2 ) + (1− θ)2δt(n+ 1

2 )) with A =
4‖~v‖2L∞(Ω×(0,T ))

(1− γ)Lνλ
.

Using that
∑m
n=1 δt

(n− 1
2 ) = t(m), we get that

∑m−1
n=1 bn ≤ AT (θ2 + (1− θ)2), which, introduced into the discrete

Gronwall inequality

∀m ∈ {1, . . . , N}, am ≤ B exp

(
m−1∑
n=1

bn

)
, (30)

provides
‖ΠDu(m)‖2L2(Ω) ≤ B exp

(
AT (θ2 + (1− θ)2)

)
, ∀m = 1, . . . , N.

This concludes the proof of (21), and, reporting this estimate in (26), allows to deduce (22).

For the sake of completeness, let us give the short proof of (30). We define vm =
∑m−1
n=1 bnan, and we prove by

induction that vm ≤ B exp
(∑m−1

n=1 bn

)
−B. Since we have

vm+1 − vm = bmam ≤ bm(vm +B) ≤ bmB exp

(
m−1∑
n=1

bn

)
,

by applying (29) and the induction hypothesis (second inequality), we get, using again the induction hypothesis,

vm+1 ≤ B(1 + bm) exp

(
m−1∑
n=1

bn

)
−B ≤ B exp(bm) exp

(
m−1∑
n=1

bn

)
−B,

hence proving the induction hypothesis for m+ 1. This concludes the proof of (30).

Let us now turn to the proof of existence of a solution to Scheme (14). Let us introduce, for any µ ∈ [0, 1],
νµ(s) = (1−µ)Lνs+µν(s). Then all the hypotheses of the lemma are satisfied with the same values Lν , Lν and
Cν , which implies that the bounds in (21)-(22) hold with the same constant for all µ ∈ [0, 1], if we replace uini by
µuini and f by µf . Identifying XD,0 with RM , let (vi)i=1,...,M be a basis of XD,0. Let F : RMN × [0, 1]→ RMN

be defined, for any u := (u
(n)
i ) i=1,...,M

n=1,...,N
and µ ∈ [0, 1], by

(F (u, µ))
(n)
i =

∫
Ω

(
δ

(n+ 1
2 )

D u(x)ΠDvi(x)−ΠDu
(n+θ)(x)~v(x, t) ·∇Dvi(x)+Λ(x)∇Dνµ(u(n+1))(x) ·∇Dvi(x)

)
dx

− µ 1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDvi(x)dxdt,
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with u(0) = µIDuini. Then F is continuous. Noticing that the set S = {(v, λ) : F (v, λ) = 0} is not empty
since it contains the pair (0,0), let (u, µ) ∈ S. Owing to (22), by equivalence of norms in finite dimensional

spaces, there exists C > 0, independent on (u, µ), such that |ν(u
(n)
i )| ≤ C for all i = 1, . . . ,M and n = 1, . . . , N .

Applying (5g), we get that

∀i = 1, . . . ,M, ∀n = 1, . . . , N, |u(n)
i | ≤ (C + Cν)/Lν . (31)

For µ = 0, the system is linear with a right-hand-side equal to 0. The bound (31) shows that it is invertible.
Therefore, we apply the constancy of the topological degree by an homotopy which allows to conclude that
F (u, 1) = 0 has at least one solution u ∈ RMN (see [15] for the topological degree theory). This proves the
existence of at least one solution to Scheme (14).

In view of the study of the time translates, in order to fulfil the hypotheses of Kolmogorov’s compactness
theorem, let us prove an estimate on the dual norm of the discrete time derivative (this dual norm is defined
by (43) and (44)).

Lemma 2.5 (Discrete version of (E3)).
Under Hypotheses (5), let DT = (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time gradient discretisation such
that ΠD is a piecewise constant function reconstruction (see Definition 2.2). Let γ ∈ (0, 1) be given and let
θ ∈ R be such that condition (18) holds. Let Cini > 0 and CP > 0 be such that (19) and (20) hold.
Then there exists C2 > 0, only depending on Lν , Lν , Cν , CP , Cini, f , ~v, λ, λ, θ and γ such that, for any
solution u := (u(n))n=0,...,N to Scheme (14),

|δDu|L2(0,T ;?,D) ≤ C2. (32)

Proof. From (14), we can write, for any v ∈ XD,0 and any n = 0, . . . , N − 1,∫
Ω

δ
(n+ 1

2 )

D u(x)ΠDv(x)dx =

∫
Ω

ΠDu
(n+θ)(x)~v(x, t) · ∇Dv(x)dx

+
1

δt(n+ 1
2 )

∫ t(n+1)

t(n)

∫
Ω

f(x, t) ΠDv(x)dxdt−
∫

Ω

Λ(x)∇Dν(u(n+1))(x)∇Dv(x)dx.

Applying the Cauchy-Schwarz inequality and applying the definition of the coercivity constant (8), we obtain

|δ(n+ 1
2 )

D u|?,D ≤ ‖~v‖L∞(Ω×(0,T ))‖ΠDu(n+θ)‖L2(Ω)

+ CD
1

δ(n+ 1
2 )

∫ t(n+1)

t(n)

‖f(·, t)‖L2(Ω)dt+ λ‖∇Dν(u(n+1))‖L2(Ω).

Then on one hand we use that for all x, y, z ∈ R, (x+ y + z)
2 ≤ 3

(
x2 + y2 + z2

)
. On the other hand, the

definition |δDu|2L2(0,T ;?,D) =
∑N−1
n=0 δ

(n+ 1
2 )|δ(n+ 1

2 )

D u|2?,D leads to

|δDu|2L2(0,T ;?,D) ≤ 3
(
‖~v‖2L∞(Ω×(0,T ))‖Π

(θ)
D u‖2L2(Ω×(0,T )) + C2

D‖f‖2L2(Ω×(0,T )) + λ
2‖∇(1)

D ν(u)‖2L2(Ω×(0,T ))

)
.

Thus (21) and (22) of Lemma 2.3 imply (32), where the dependence of C2 with respect to the data of the
problem are resulting from the one arising in Lemma 2.3.

The next lemma concerns the study of the time translates of Π
(1)
D ν(u). Note that the estimate (22) provides

an estimate on the space translate of the same function, and the combination of these two estimates allows the
application of Kolmogorov’s theorem for deriving a strong convergence property.

9



Lemma 2.6 (Estimate on the time translates).
Under Hypotheses (5), let DT = (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time gradient discretisation such
that ΠD is a piecewise constant function reconstruction (see Definition 2.2). Let γ ∈ (0, 1) be given and let
θ ∈ R be such that condition (18) holds. Let Cini > 0 and CP > 0 be such that (19) and (20) hold.
Then there exists C3 > 0, only depending on Lν , Lν , Cν , CP , Cini, f , ~v, λ, λ, θ and γ such that, for any
solution u := (u(n))n=0,...,N to Scheme (14),

‖Π(1)
D ν(u)(·, ·+ τ)−Π

(1)
D ν(u)(·, ·)‖2L2(Ω×(0,T−τ)) ≤ C3

√
τ(τ + δtD),∀τ ∈ (0, T ). (33)

Proof. Let τ ∈ (0, T ). Similarly using that Lν is a Lipschitz constant of ν and ν is non-decreasing, and using
the fact that ΠD is piecewise constant, the following inequality holds:∫

Ω×(0,T−τ)

(
Π

(1)
D ν(u)(x, t+ τ)−Π

(1)
D ν(u)(x, t)

)2

dxdt ≤ Lν
∫ T−τ

0

A(t)dt, (34)

where, for almost every t ∈ (0, T − τ),

A(t) =

∫
Ω

(
Π

(1)
D ν(u)(x, t+ τ)−Π

(1)
D ν(u)(x, t)

)(
Π

(1)
D u(x, t+ τ)−Π

(1)
D u(x, t)

)
dx.

We apply lemma A.1 and we get∫ T−τ

0

A(t)dt ≤ 2
√
τ(τ + δt) |δDu|L2(0,T ;?,D) ‖∇

(1)
D ν(u)‖L2(0,T ;L2(Ω)d). (35)

Using (32), (22) in (35), we get the result.

3 Convergence analysis

Let us begin with the weak convergence of Π
(θ)
D u(t) and Π

(1)
D u(t), for all t ∈ [0, T ] to an element of Cw([0, T ];L2(Ω)),

denoting the set of functions from [0, T ] to L2(Ω), continuous for the weak topology of L2(Ω)).

Lemma 3.1 (Time pointwise weak convergence of Π
(θ)
D u(t) and Π

(1)
D u(t)).

Let Hypotheses (5) be fulfilled. Let ((DT )m)m∈N be a consistent sequence of space-time gradient discretisations
which is limit–conforming, and such that, for all m ∈ N, ΠDm

is a piecewise constant function reconstruction
(see Definitions 2.1 and 2.2). Let γ ∈ (0, 1) be given and let θ ∈ R be such that condition (18) holds for all
m ∈ N. For any m ∈ N, let um be a solution to Scheme (14).
Then there exists ū ∈ L∞(0, T ;L2(Ω)) ∩ Cw([0, T ];L2(Ω)) such that, up to a subsequence, for all t ∈ [0, T ],

Π
(θ)
Dm

um(t) and Π
(1)
Dm

um(t) weakly converges in L2(Ω) to ū(t) as m→∞.

Proof. The existence of Cini > 0 such that (19) holds, letting D = Dm for all m ∈ N, is a consequence of the
consistency hypothesis, which implies that ‖uini−ΠDmIDmuini‖L2(Ω) tend to 0 as m→∞, and the existence of
CP > 0 such that (20) holds, letting D = Dm for all m ∈ N, is resulting from the limit-conformity hypothesis,
which implies the coercivity property (see [12, Lemma 2.6]).
Applying Lemma 2.3, we get that there exists ū(θ) ∈ L∞(0, T ;L2(Ω)) (resp. ū(1) ∈ L∞(0, T ;L2(Ω))) such that

Π
(θ)
Dm

um (resp. Π
(1)
Dm

um) weakly converges, up again to the extraction of a subsequence, to ū(θ) (resp. ū(1)) in

L2(Ω× (0, T )).

Let ϕ ∈ C∞c ([0, T )) and w ∈ C∞c (Ω) , and let wm ∈ XDm,0 be such that

wm = argmin
z∈XDm,0

SDm(z). (36)
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Since the definitions of | · |?,D and of δ
(n+ 1

2 )

D u imply

|
∫

Ω

(ΠDm
u(n+1)
m −ΠDm

u(n+θ)
m )ΠDm

wmdx| ≤ δtDm
|1− θ| |δ(n+ 1

2 )

Dm
u|?,Dm

‖wm‖Dm
,

we obtain, multiplying the above inequality by δt(n+ 1
2 )ϕ(t(n))wm, summing the resulting equation on n =

0, . . . , Nm − 1 and using the Cauchy-Schwarz inequality, that

|
Nm−1∑
n=0

∫
Ω

(ΠDm
u(n+1)
m −ΠDm

u(n+θ)
m )δt(n+ 1

2 )ϕ(t(n))ΠDm
wmdx|

≤ δtDm
|1− θ| |δDm

u|L2(0,T ;?,Dm)‖wm‖Dm

√
T‖ϕ‖L∞([0,T ]).

Denoting by ψm(x, t) = ϕ(t(n))ΠDm
wm(x) for a.e. t ∈ (t(n), t(n+1)) and x ∈ Ω, we get

|
∫ T

0

∫
Ω

(Π
(1)
Dm

um −Π
(θ)
Dm

um)ψmdxdt| ≤ δtDm |1− θ| |δDmu|L2(0,T ;?,Dm)‖wm‖Dm

√
T‖ϕ‖L∞([0,T ]).

Using Lemma 2.5, we get that the right hand side of the above inequality tends to 0 as m→∞. Passing to the
limit in the above inequality, and using weak/strong convergence in the left hand side, we obtain that∫ T

0

∫
Ω

(ū(1)(x, t)− ū(θ)(x, t))ϕ(t)w(x)dxdt = 0.

Since the set T = {
∑q
i=1 ϕi(t)wi(x) : q ∈ N, ϕi ∈ C∞c [0, T ), wi ∈ C∞c (Ω)} is dense in C∞c (Ω × [0, T )), we

conclude that ū(1) = ū(θ). We now denote by ū ∈ L∞(0, T ;L2(Ω)) the common limit of Π
(1)
Dm

um and Π
(θ)
Dm

um.

The fact that ū ∈ Cw([0, T ];L2(Ω)) and that, up to a subsequence, for all t ∈ [0, T ], Π
(θ)
Dm

um(t) and Π
(1)
Dm

um(t)

weakly converges in L2(Ω) to ū(t) as m→∞ is proved by [12, theorem 4.19], since its hypotheses hold thanks
to Lemmas 2.3 and 2.5.

We can now state the convergence result in the general case.

Theorem 3.2 (Convergence of Scheme (14)).
Let Hypotheses (5) be fulfilled. Let ((DT )m)m∈N be a consistent sequence of space-time gradient discretisations,
such that the associated sequence of approximate gradient approximations is limit–conforming and compact (see
Definition 2.1), and such that, for all m ∈ N, ΠDm

is a piecewise constant function reconstruction (see Definition
2.2). Let γ ∈ (0, 1) be given and let θ ∈ R be such that condition (18) holds for all m ∈ N. For any m ∈ N, let
um be a solution to Scheme (14).
Then there exists ū ∈ L∞(0, T ;L2(Ω))∩Cw([0, T ];L2(Ω)) such that ū is a solution of Problem (6) and, up to a
subsequence,

1. for all t ∈ [0, T ], Π
(θ)
Dm

um(t) and Π
(1)
Dm

um(t) weakly converges in L2(Ω) to ū(t) as m→∞,

2. Π
(1)
Dm

ν(um) converges in L2(Ω× (0, T )) to ν(ū) as m→∞,

3. ∇(1)
Dm

ν(um) weakly converges in L2(Ω× (0, T ))d to ∇ν(ū) as m→∞.

Remark 3.3. Note that this theorem shows, in the case where ν is strictly increasing, that the convergence of

Π
(1)
Dm

um to ū holds in L2(Ω× (0, T )).
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Proof. We notice that the hypotheses of the theorem enable the application of Lemma 3.1, and we therefore
consider the corresponding extracted subsequence. The compactness hypothesis of (Dm)m∈N allows to enter

into the framework of Kolmogorov’s theorem. Indeed, prolonging Π
(1)
D ν(u) by 0 outside Ω × (0, T ), from [12,

Lemma 2.21], we get that the space translates of Π
(1)
D ν(u) uniformly tend to 0. For the time translates,

in addition to Lemma A.1, we show that the terms
∫

Ω×(−τ,0)

(
Π

(1)
D ν(u)(x, t + τ) − Π

(1)
D ν(u)(x, t)

)2

dxdt and∫
Ω×(T−τ,T )

(
Π

(1)
D ν(u)(x, t+τ)−Π

(1)
D ν(u)(x, t)

)2

dxdt are of order less than τ thanks to Estimate (21). Therefore,

there exists χ ∈ L2(Ω× (0, T )) such that Π
(1)
Dm

ν(um) converges, up to the extraction of a subsequence, to χ in

L2(Ω× (0, T )). Thanks to the limit-conformity of the sequence (Dm)m∈N, we get that χ ∈ L2(0, T ;H1
0 (Ω)).

This allows to apply to Minty’s trick [12, Lemma D.10], for concluding that χ(x, t) = ν(ū(x, t)) for a.e. (x, t) ∈
Ω× (0, T ). The proof that ū is the weak solution of Problem (6) follows similar steps to that of [16, Theorem

3.1]: indeed, passing to the limit on the convection term is a consequence of the weak convergence of Π
(θ)
Dm

um(t).

Let us now provide a stronger convergence result. For a solution ū of Problem (6) and for all t ∈ [0, T ], the
“mushy” zone M(t) is defined as the set of a.e. x ∈ Ω such that there exist a < b ∈ R such that ν is constant
on [a, b] and ū(x, t) ∈]a, b[. This can also be expressed by

for a.e. x ∈M(t), ∃a, b ∈ ν−1({ν(ū(x, t))}), (a− ū(x, t))(b− ū(x, t)) < 0.

This last criterion is used in Corollary 3.4 and in Lemma 3.5.
Recall that, in the case of regular divergence free velocity and null right hand side f , the solution ū of (4a)
is such that the measure of the mushy zone |M(t)| is decreasing with t, and therefore, if M(0) = 0, we have

M(t) = 0 for all t ∈ [0, T ] (see for example [6, 22]). Denoting by M̂ = {(x, t) : t ∈ [0, T ], x ∈ M(t)}, we show

that the convergence theorem 3.2 can be improved in Q := Ω × (0, T ) \ M̂. This convergence result implies
that, for strictly increasing functions ν, or in the case of continuous solutions with negligible mushy zone (see
the numerical results of Section 4), a strong convergence result holds on the whole domain.

Corollary 3.4 (Strong convergence outside the mushy region). Under the hypotheses of Theorem 3.2, let ū
be given by Theorem 3.2. Let us define Q as the largest subset of Ω× (0, T ) (up to a subset with null measure)
such that:

for a.e. (x, t) ∈ Q, ∀a, b ∈ ν−1({ν(ū(x, t))}), (a− ū(x, t))(b− ū(x, t)) ≥ 0.

Then,
∫
Q

(Π
(θ)
Dm

um − ū)2dxdt and
∫
Q

(Π
(1)
Dm

um − ū)2dxdt tend to 0 as m→∞.

Proof. If the measure of Q is strictly positive, we apply Lemma 3.5 letting wm = Π
(θ)
Dm

um or wm = Π
(1)
Dm

um and
w = ū.

Lemma 3.5. Let N ∈ N? be given, let ν be such that Hypotheses (5f) and (5g) hold, and let Q be a bounded
measurable subset of RN with strictly positive measure. Let w ∈ L2(Q) be such that

for a.e. x ∈ Q, ∀a, b ∈ ν−1({ν(w(x))}), (a− w(x))(b− w(x)) ≥ 0. (37)

Let (wn)n∈N be a sequence of functions of L2(Q) such that, as m→∞:

1. (wn)n∈N weakly converges to w in L2(Q),

2. (ν(wn))n∈N converges to ν(w) in L2(Q).

Then (wn)n∈N converges to w in L2(Q).

Proof. For all n ∈ N, let us denote by ŵn a representative of wn, and let us denote by ŵ a representative of w.
Since (ν(wn))n∈N converges to ν(w) in L2(Q), we extract a subsequence, that we again denote (wn)n∈N, such
that (ν(ŵn(x))−ν(ŵ(x)))2 converges to 0 almost everywhere with domination in L1(Q) by [20, Theorem 4.49].
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We then denote by Q̂ the subset of Q such that this convergence holds (we then have that the measure of Q \ Q̂
is null). Applying (5g), we get that

∀n ∈ N, ∀x ∈ Q̂, |ŵn(x)| ≤ 1

Lν
(|ν(ŵn(x))|+ Cν), (38)

showing that

∀x ∈ Q̂, | lim sup
n→∞

ŵn(x)| ≤ 1

Lν
(|ν(ŵ(x))|+ Cν) and | lim inf

n→∞
ŵn(x)| ≤ 1

Lν
(|ν(ŵ(x))|+ Cν). (39)

Denoting by ŵinf := lim infn→∞ ŵn and ŵsup := lim supn→∞ ŵn, and owing to the monotonicity property of ν,
we have that

∀x ∈ Q̂, ν(ŵ(x)) ≤ ν(ŵinf(x)) ≤ ν(ŵsup(x)) ≤ ν(ŵ(x)),

which implies
∀x ∈ Q̂, ν(ŵ(x)) = ν(ŵinf(x)) = ν(ŵsup(x)) = ν(ŵ(x)).

Hence, owing to Hypothesis (37) and to ŵinf(x), ŵsup(x) ∈ ν−1({ν(ŵ(x))}), we get that

for a.e. x ∈ Q̂, (ŵinf(x)− ŵ(x))(ŵsup(x)− ŵ(x)) ≥ 0.

We now denote by Q̃ the subset of Q̂ such that the above inequality holds for any x ∈ Q̃, and such that, owing
to the weak convergence of wn to w in Q, we have

∀x ∈ Q̃, ŵinf(x) ≤ ŵ(x) ≤ ŵsup(x).

We again have that the measure of Q \ Q̃ is null. Gathering the two previous relations, we get that

∀x ∈ Q̃, ŵinf(x) = ŵ(x) or ŵ(x) = ŵsup(x).

Let us define Q̃inf = {x ∈ Q̃, ŵinf(x) = ŵ(x)} (we similarly define Q̃sup). We get that Q̃ = Q̃inf ∪ Q̃sup. We
observe that the weak convergence of wn to w in Q implies

lim
n→∞

∫
Q̃inf

ŵn(x)dx =

∫
Q̃inf

ŵ(x)dx =

∫
Q̃inf

ŵinf(x)dx,

(the same property holds for Q̃sup) and therefore

lim
n→∞

∫
Q̃inf

(ŵn(x)− ŵinf(x))dx = lim
n→∞

∫
Q̃sup

(ŵsup(x)− ŵn(x))dx = 0.

Let us denote by zn(x) = ŵn(x) − ŵinf(x) for all x ∈ Q̃inf . Since lim infn→∞ zn(x) = 0 for all x ∈ Q̃inf , we

get that limn→∞min(zn(x), 0) = 0 for all x ∈ Q̃inf , and the domination property of |zn(x)|, resulting from (38)
and (39), implies that limn→∞

∫
Q̃inf

min(zn(x), 0)dx = 0. Therefore, since
∫
Q̃inf
|zn(x)|dx =

∫
Q̃inf

zn(x)dx −
2
∫
Q̃inf

min(zn(x), 0)dx, we get that

lim
n→∞

∫
Q̃inf

|zn(x)|dx = lim
n→∞

∫
Q̃inf

|ŵn(x)− ŵinf(x)|dx = lim
n→∞

∫
Q̃inf

|ŵn(x)− ŵ(x)|dx = 0.

A similar reasoning shows that

lim
n→∞

∫
Q̃sup

|ŵn(x)− ŵsup(x)|dx = lim
n→∞

∫
Q̃sup

|ŵn(x)− ŵ(x)|dx = 0.
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This proves, since Q̃ = Q̃inf ∪ Q̃sup, that

lim
n→∞

∫
Q̃

|ŵn(x)− ŵ(x)|dx = 0.

Therefore, again up to the extraction of a subsequence, we get that ŵn(x) converges to ŵ(x) for almost every

x ∈ Q̃. Applying the dominated convergence theorem (using the domination of (ν(ŵn(x)) − ν(ŵ(x)))2 and
(38)), we then get that

lim
n→∞

∫
Q̃

(ŵn(x)− ŵ(x))2dx = 0.

This proves the convergence of an extracted subsequence of the initial sequence (wn)n∈N to w in L2(Q). We
then get that the whole sequence converges by a standard argument of uniqueness of the limit.

4 Numerical examples

We compare in this section two schemes which satisfy the assumptions of this paper. Let us briefly recall each
of them.

The Control Volume Finite Element (CVFE) scheme

This scheme, also called the mass-lumped P1 finite element method, is detailed in [12, Section 8.4]. We consider
a conforming triangular mesh of Ω, and we define a dual mesh by joining the centre of gravity of the triangles
with the middle of the edges. Denote by V the set of the vertices of the mesh, and for v ∈ V define Kv as the
dual cell around the vertex v.

1. We then define XD,0 as the set of all families u = (uv)v∈V such that uv = 0 for all vertices v located on
the boundary of the domain.

2. For every u ∈ XD,0, v ∈ V and for almost-every x ∈ Kv, ΠDu(x) = uv (piecewise constant reconstruction
in all Kv);

3. For every u ∈ XD,0, define ∇Du as the gradient of the conforming piecewise affine function reconstructed
in the triangles from the values at the vertices of the triangles.

The Vertex Approximate Gradient (VAG) scheme

The properties of the VAG scheme, introduced in [18], are detailed in [12, Section 8.5]. In the 2D case, a
polygonal mesh M is given, such that each element K ∈ M is strictly star-shaped with respect to some point
xK . We denote by V the set of all the vertices of the mesh, and by E the set of all the edges of the elements of
the mesh, assumed to be linear segments. For any σ ∈ E , we denote by xσ its middle point. We consider two
meshes of Ω. The first one is a triangular mesh, where the vertices of the triangles are the points xK ,xσ,v, for
all K ∈ M, for all σ of K and v common vertex of K and σ. The second one is a dual mesh, associated to all
points (xK)K∈M and (v)v∈V .

1. We then define XD,0 as the set of all families u = ((uK)K∈M, (uv)v∈V) such that uv = 0 for all v ∈ V∩∂Ω.

2. The mapping ΠD is defined by piecewise constant functions having the values uK in the dual control
volume associated to xK for all K ∈M and uv in the dual control volume associated to v ∈ V.

3. Considering the value uσ = 1
2 (uv +uv′) at the middle xσ of an edge σ = [v,v′], the mapping ∇D is defined

as the gradient of the P1 affine reconstruction with the values uK , uσ, uv at the vertices xK ,xσ,v of any
triangle of the triangular mesh.
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This scheme has two advantages. Firstly, adjusting the dual mesh with respect to the heterogeneous properties
of the domain, it allows accurate computations of coupled conservation equations in porous media [18]. Secondly,
it leads to cheap computations with the elimination of all values (uK)K∈M with respect to the values (uv)v∈V .

Data for the numerical tests

In the following numerical examples, we consider the function ν presented in the introduction of this paper,
letting Cv = Cl = 1, Tf = 0 and L = 1, which leads to

∀s ∈ R, ν(s) =


s if s < 0,

0 if 0 ≤ s ≤ 1,

s− 1 if 1 < s.

(40)

In this case, the data involved in (5f) and (5g) can be chosen as Lν = 1, Lν = 1 and Cν = 1.

We let d = 2, Ω = (0, 1) × (0, 1), ~v = (1, 1) (hence ‖~v‖∞ =
√

2), Λ = Id (we then choose λ = λ = 1 in (5d)).
Letting γ tend to 1, and considering the case δtD = 0.001 (this value is selected in most of the numerical tests
below) the maximum value of θ2 such that Condition (18) holds is therefore equal to 125

√
2), which enables

|θ| ≤ 10.

We finally let f = 0 and uini(x) = αini if x = (x1, x2) ∈ (0.1, 0.4) × (0.1, 0.4) and uini(x) = 0 elsewhere, with
the three cases αini = 1.5, αini = 1 and αini = .5. These three choices are aimed to provide the behaviour of
the numerical schemes in three cases: in the first and second (which is a limit case) cases a strong convergence
property holds for ΠDu (see Lemma 3.5), and in the third one is a case where oscillations are expected. The
computations are done with a final time T = 0.5, with a constant time step equal to 0.001 and a family of
triangular meshes extracted from the benchmark [21]. The coarsest grid, respectively the finest one, has a space
step equal to 0.25, respectively 0.016.

Although there is no uniqueness of the solution, as mentioned in the introduction (since any value α ∈ [0, 1] can
be considered as an entering boundary condition for the linear hyperbolic problem), all the solutions to (6) are
identical on the domain (t, 1)× (t, 1) at any time t ∈ (0, T ) since ~v = (1, 1). The following comparisons with an
analytical solution are therefore done in the domain QT :=

⋃
t∈(0,T )(t, 1)× (t, 1)× {t} ⊂ Ω× (0, T ).

4.1 Case αini = 1.5

The mushy zone is such that M(0) = 0. So any solution of (6) is given at any time t ∈ (0, T ] by ū(·, t) > 1 a.e.

inside a moving domain Ω̃(t), with Ω̃(0) = (0.1, 0.4) × (0.1, 0.4), and ū(·, t) = 0, a.e. inside [t, 1] × [t, 1] \ Ω̃(t).

Due to the choice of the velocity ~v, this domain Ω̃(t) moves along the diagonal [(0, 0), (1, 1)].
We then observe in Figures 1 and 2 that the numerical solutions obtained with the CVFE and VAG schemes
respect the expected physical features of the problem and seem to numerically converge to this solution. There
is a good agreement between the two schemes, for the different values of θ on both figures. Recall that, in
this case, Theorem 3.2 and Corollary 3.4 prove the convergence in L2(QT ) of the numerical solution to the
continuous one, since ū(x, t) /∈ (0, 1) for a.e. (x, t) ∈ QT .

4.2 Case αini = 1

In this case, any solution ū to Problem (6) is also solution of the following pure convection problem:

∂tū+ div(ū~v) = 0, in Ω× (0, T ), (41)

with the same initial condition, and is therefore equal, for any t ∈ (0, T ) to 1 in [t+ 0.1, t+ 0.4]× [t+ 0.1, t+ 0.4]
and to 0 on [t, 1]× [t, 1] \ [t+ 0.1, t+ 0.4]× [t+ 0.1, t+ 0.4]. Therefore the measure of the mushy zone is null in
QT , and Theorem 3.2 and Corollary 3.4 imply a strong convergence in QT .
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Figure 1: Case αini = 1.5, solutions at T = 0.5. Top: CVFE scheme (from left to right: θ = 0, θ = 0.5, θ = 1).
Bottom: same for the VAG scheme (cell center values). The colour blue is associated to the value 0, whereas
the colour red corresponds to 1. Results obtained on the finest grid.

Figure 2: Case αini = 1.5, solutions at T = 0.5. Comparison of profiles along the first diagonal. Circle blue
for θ = 0, cross green for θ = 0.5 and square black for θ = 1. Left: CVFE scheme. Right: same for the VAG
scheme (cell center values). Results obtained on the finest grid.

We compare in Figure 3 the numerical solution obtained at T = 0.5 with θ = 1 by the CVFE and the VAG
schemes, compared to an upstream implicit weighting scheme. The accurateness of centred schemes compared
to upstream scheme is confirmed by the L1 and L2 errors respectively shown for these two schemes in Table 1.
We also again observe that the bounds are not strictly respected by the centred scheme, but that the error
committed on the bounds tends to 0 rapidly. As expected in the case of a discontinuous analytical solution, the
numerical orders of convergence are nevertheless closer to 1/2 than to 1.
In this situation where the degenerate diffusion numerically enables the strong convergence of the scheme, the
scheme shows a very low dependence with respect to θ, as shown in Table 2. This is confirmed by the comparison
of the profiles of the solution along the first diagonal (see Figure 4), which nevertheless shows that increasing
the values of θ is similar to adding diffusion (as we also observe in Section 4.4).
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Figure 3: Case αini = 1, solutions at T = 0.5. From left to right: CVFE, VAG (cell centre values), upstream
schemes (the colour blue is associated to the value 0, whereas the colour red corresponds to 1) and comparison
of profiles along the first diagonal (dash red for CVE, dot green for VAG, black line for upstream). Results
obtained on the finest grid.

h δt L2-error ratio L1-error ratio umin umax

0.250 0.01024 0.202E+00 - 0.769E-01 - -0.020 1.032
0.125 0.00512 0.136E+00 0.572 0.378E-01 1.023 -0.021 1.024
0.062 0.00256 0.992E-01 0.454 0.239E-01 0.662 -0.012 1.019
0.031 0.00128 0.748E-01 0.408 0.149E-01 0.685 -0.007 1.009
0.016 0.00064 0.574E-01 0.383 0.922E-02 0.689 -0.004 1.005

0.250 0.01024 0.182E+00 - 0.572E-01 - -0.040 1.045
0.125 0.00512 0.126E+00 0.535 0.314E-01 0.864 -0.018 1.019
0.062 0.00256 0.942E-01 0.415 0.171E-01 0.876 -0.013 1.016
0.031 0.00124 0.708E-01 0.412 0.102E-01 0.751 -0.007 1.006
0.016 0.00064 0.550E-01 0.362 0.619E-02 0.717 -0.003 1.004

0.250 0.01024 0.170E+00 - 0.625E-01 - 0.000 0.995
0.125 0.00512 0.151E+00 0.170 0.488E-01 0.358 0.000 1.000
0.062 0.00256 0.124E+00 0.293 0.401E-01 0.281 0.000 1.000
0.031 0.00128 0.102E+00 0.275 0.311E-01 0.369 0.000 1.000
0.016 0.00064 0.854E-01 0.258 0.229E-01 0.442 0.000 1.000

Table 1: Case αini = 1 with θ = 1. L2(QT ) and L1(QT ) discrete errors. Results for CVFE method (top array),
VAG scheme (middle array) and upstream scheme (bottom array).

4.3 Case αini = 0.5

We now turn to the case where αini = 0.5. In this case, any solution ū to Problem (6) is also solution of (41)
with the same initial condition as the problem studied in this paper. It is therefore equal, for any t ∈ (0, T ), to
0.5 in [t+ 0.1, t+ 0.4]× [t+ 0.1, t+ 0.4] and to 0 on [t, 1]× [t, 1] \ [t+ 0.1, t+ 0.4]× [t+ 0.1, t+ 0.4]. Therefore the
measure of the mushy zone is strictly positive and Theorem 3.2 and Corollary 3.4 imply a strong convergence
only in QT \

⋃
t∈(0,T )[t+ 0.1, t+ 0.4]× [t+ 0.1, t+ 0.4]×{t}. Nevertheless, although the numerical results show

oscillations, the weak convergence for ΠDu holds for any value θ ∈ R. We compare in Figure 5 the numerical
solution obtained at T = 0.5 with the CVFE and VAG schemes on the finest mesh. We observe that the
height of the oscillations is decreasing with respect to θ, and that high values for θ stabilise the oscillations,
but introduce some numerical diffusion. The solution obtained with the VAG scheme and θ = 1.5 appears to
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h δt L2-error ratio L1-error ratio umin umax

0.250 0.01024 0.277E+00 - 0.983E-01 - -0.059 1.066
0.125 0.00512 0.169E+00 0.714 0.428E-01 1.199 -0.038 1.035
0.062 0.00256 0.106E+00 0.677 0.216E-01 0.990 -0.016 1.020
0.031 0.00128 0.745E-01 0.506 0.130E-01 0.727 -0.007 1.010
0.016 0.00064 0.561E-01 0.410 0.832E-02 0.646 -0.004 1.005

0.250 0.01024 0.192E+00 - 0.740E-01 - -0.013 1.028
0.125 0.00512 0.136E+00 0.496 0.392E-01 0.916 -0.019 1.021
0.062 0.00256 0.100E+00 0.441 0.254E-01 0.630 -0.012 1.018
0.031 0.00128 0.756E-01 0.404 0.156E-01 0.703 -0.007 1.009
0.016 0.00064 0.579E-01 0.384 0.954E-02 0.708 -0.004 1.005

0.250 0.01024 0.189E+00 - 0.733E-01 - -0.001 1.022
0.125 0.00512 0.140E+00 0.438 0.419E-01 0.807 -0.017 1.018
0.062 0.00256 0.102E+00 0.448 0.274E-01 0.613 -0.012 1.017
0.031 0.00128 0.769E-01 0.413 0.166E-01 0.726 -0.006 1.009
0.016 0.00064 0.588E-01 0.389 0.997E-02 0.733 -0.004 1.005

Table 2: Case αini = 1. L2(QT ) and L1(QT ) discrete errors. Results for CVFE method. θ = −8 (top array),
θ = 4 (middle array) and θ = 8 (bottom array).

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

theta = -8
theta = 1
theta = 2
theta = 4
theta = 8

Figure 4: Case αini = 1, solutions at T = 0.5 with h = 0.031. Comparison of profiles along the first diagonal
for different values of θ.

be quite good.

4.4 The θ-scheme: another way to introduce numerical diffusion

In numerical codes such as the one used in [5], the upstream weighting scheme is used for the energy equation,
leading to the addition of numerical diffusion in order to stabilise the convection terms. Let us show how the
parameter θ can play a similar role (as we noticed in the numerical Section 4.3), by using an analogy with
continuous equations.
We assume here that ~v is a constant vector and we consider formally the transport equation, in which ū(t) is
replaced by ū(t+ θδt) in the convection term:

∂tū(x, t) + div(ū(x, t+ θδt)~v) = ∂tū(x, t) + ~v · ∇ū(x, t+ θδt) = 0, in Ω× (0, T ). (42)

We use the following approximation

ū(x, t+ θδt) ' ū(x, t) + θδt∂tū(x, t) = ū(x, t)− θδt~v · ∇ū(x, t+ θδt).
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Figure 5: Case αini = 0.5, solutions at T = 0.5. Results obtained on the finest grid. Left: CVFE scheme. Right:
same for the VAG scheme (cell center values). Top: colour blue is associated to the value 0, whereas colour red
corresponds to 0.5, CVFE for θ = 4 and VAG for θ = 1.5. Bottom: comparison of profiles along the diagonal,
cross red for θ = 0, square black for θ = 1 and circle green for θ = 4 (CVFE) or θ = 1.5 (VAG).

We then have, reporting this value in (42) and setting ε = θδt|~v| (which is homogeneous with a length),

∂tū(x, t) + ~v · ∇ū(x, t)− ε div(D∇ū(x, t+ θδt)) = 0,

with

D =
1

|~v|
~v ⊗ ~v.

This equation shows a transport equation, with an anisotropic diffusion term which applies in the direction of
the velocity, as does an upstream weighting scheme.

5 Conclusion

The mathematical study of the approximation of a linear convection – degenerate diffusion problem by a centred
θ-scheme for the convection term shows the following features:

1. The strong convergence of the scheme is observed everywhere outside the mushy region.

2. A weak convergence always holds for any value of θ, due to the degenerate diffusion term, which is strongly
different with the properties of a centred finite volume scheme without (degenerate) diffusion.

3. The centred scheme happens to be much more precise than upstream schemes in some situations.

4. The parameter θ can be numerically used for stabilising the centred scheme as an artificial viscosity.
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These results show that a track which remains to be studied is the use of such a θ-centred scheme in practical
applications (such as the ones handled in [5]), with the goal to tune the diffusion in such a way that the precision
is sufficiently respected.
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A Gradient discretisations and time translates

Lemma A.1. Let (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) be a space-time gradient discretisation (we then denote

by δt(n+ 1
2 ) := t(n+1) − t(n) and δtD = maxn=0,...,N−1 δt

(n+ 1
2 )). We define the following semi-norm on L2(Ω):

∀w ∈ L2(Ω), |w|?,D = sup

{∫
Ω

w(x)ΠDv(x)dx; v ∈ XD,0, ‖∇Dv‖L2(Ω)d = 1

}
, (43)

and we introduce the following semi-norm on L2(0, T ;L2(Ω)):

∀w ∈ L2(0, T ;L2(Ω)), |w|L2(0,T ;?,D) =

(∫ T

0

|w(t)|2?,Ddt

)1/2

. (44)

For any sequence (u(n))n=0,...,N of elements of XD,0, we define

for a.e. x ∈ Ω, ∀t ∈ (t(n), t(n+1)], ∀n = 0, . . . , N − 1 : δ
(n+ 1

2 )

D u(x) = ΠD
u(n+1) − u(n)

δt(n+ 1
2 )

(x),

δDu(x, t) = δ
(n+ 1

2 )

D u(x), Π
(1)
D u(x, t) = ΠDu

(n+1)(x), ∇(1)
D u(x, t) = ∇Du(n+1)(x),

Then, for any sequences (u(n))n=0,...,N and (v(n))n=0,...,N of elements of XD,0, there holds

∫ T−τ

0

∫
Ω

(Π
(1)
D v(x, t+ τ)−Π

(1)
D v(x, t)) (Π

(1)
D u(x, t+ τ)−Π

(1)
D u(x, t))dxdt

≤ 2
√
τ(τ + δtD) |δDv|L2(0,T ;?,D) ‖∇

(1)
D u‖L2(0,T ;L2(Ω)d). (45)

Proof. Let us define

T1(t) =

∫
Ω

(Π
(1)
D u(x, t+ τ)−Π

(1)
D u(x, t))(Π

(1)
D v(x, t+ τ)−Π

(1)
D v(x, t))dx.

Let t ∈ (0, T − τ). Denoting n0(t), n1(t) = 0, . . . , N − 1 such that t(n0(t)) ≤ t < t(n0(t)+1) and t(n1(t)) ≤ t+ τ <
t(n1(t)+1), we may write

T1(t) =

∫
Ω

(
ΠDu

(n1(t)+1)(x)−ΠDu
(n0(t)+1)(x)

)( n1(t)∑
n=n0(t)+1

δt(n+ 1
2 )δ

(n+ 1
2 )

D v(x)
)

dx,

which also reads

T1(t) =

∫
Ω

(
ΠDu

(n1(t)+1)(x)−ΠDu
(n0(t)+1)(x)

)(N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )δ

(n+ 1
2 )

D v(x)
)

dx,

with χn(t, t+ τ) = 1 if t(n) ∈ (t, t+ τ ] and χn(t, t+ τ) = 0 if t(n) /∈ (t, t+ τ ].
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This leads to

T1(t) ≤
(
‖∇Du(n1(t)+1)‖L2(Ω)d + ‖∇Du(n0(t)+1)‖L2(Ω)d

)(N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )|δ(n+ 1

2 )

D v|?,D
)
.

Using the inequality ab ≤ 1
2 (αa2 + 1

αb
2) for some α > 0 chosen later, this yields:

T1(t) ≤ α

2
(T2(t) + T3(t)) +

1

α
T4(t). (46)

with

T2(t) =

N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )‖∇Du(n0(t)+1)‖2L2(Ω)d ,

T3(t) =

N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )‖∇Du(n1(t)+1)‖2L2(Ω)d ,

and

T4(t) =

N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )|δ(n+ 1

2 )

D v|2?,D.

Applying [19, Proposition 9.3] yields

∫ T−τ

0

T2(t)dt ≤ (τ + δtD)‖∇(1)
D u‖2L2(0,T ;L2(Ω)d) and

∫ T−τ

0

T3(t)dt ≤ (τ + δtD)‖∇(1)
D u‖2L2(0,T ;L2(Ω)d), (47)

and again applying [19, Proposition 9.3] gives∫ T−τ

0

T4(t)dt ≤ τ
∫ T

0

|δDv(t)|2?,Ddt = τ |δDv|2L2(0,T ;?,D), (48)

hence leading to (45), letting α =
√
τ/(τ + δtD)|δDv|L2(0,T ;?,D)/‖∇

(1)
D u‖L2(0,T ;L2(Ω)d).
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